Solutions Resit Exam - Statistics 2019/2020

SOLUTION 1:
(a) Let n; denote the no. of realisations with X = j (j =0,...,3). The likelihood is:

L) = ﬁp(%w) — ﬁp(ﬂﬁ)”i = (?)no : <g)nl . (2(13— 9))n2 ' (%9)113

i=1 j=0

Switching to the log likelihood:

1(0) =log(L(0)) = nolog <%) + 1y log (g) + g log (2(13— 0)) Ty log <%)

= nglog (20) + nylog () + nalog (2 — 20) 4+ nglog (1 — 0) — nlog(3)

Taking the derivative of [(0) and setting it to zero:
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To check whether this is really a maximum, we compute the 2nd derivative:
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As the 2nd derivative is negative for all §, we have a maximum.
For the given data (ng =2, ny = 3, n = 10): 0y, = 0.5.

(b) Compute the expectation of X:
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Then set Fy[X] = X and solve for 6:
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For the given data (z = 1.5): Oyon = .

(c) Note that for a sample of size n: Ey[n;| = n - p(j|@). This yields

2
Eylngl =n - ; and Fy[ni| =n - g

The ML estimator is unbiased, as

EG[éML] = Eolno] + Eolm] =0

n




SOLUTION 2:
Compute E[X?]: From Var(X) = E[X?] — E[X]? it follows:

E[X?] = Var(X) + E[X]* = kp(1 —p) + k*p
We define X = > X; and Y = > X2, and we then set:
i=1 i=1

X =FE[X]=kp and Y = E[X? = kp(1 — p) + k*p?

From the 1st equation it follows: p = % Plugging this into the 2nd equation:
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In summary, we thus have:
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SOLUTION 3:
(a) The joint density is:
3 )\:61+x2+x3
p(w1, 22, 23(0) = gp(ﬂizm = 673Am = h(z1 + x2 + x3|A) - g(21, 22, 23)
where 1
h(xy + o9 + 23] \) = e AN1F218 and (1,22, 23) = ————
1’1!1’2!1’3!

It follows (factorization theorem) that T'( X7, Xo, X3) = X7+ Xo+ X3 is sufficient statistic.
(b) Compute log likelihood (for n = 1):

I(A) =log(p(x1|N)) = =X + 21 log(A) — log(z4!)

Take 1st and 2nd derivative:
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The Fisher information (of a sample of size 1) is:

I\ = —E[l"(\)] = -

(c) We compute:

X1 42Xy +3X5,  B[Xi]+2E[Xy] + 3E[X3], 6

E\] = E| ; | = . |=2 =
Var(h,) = Var(Xl +2X, + 3X3) _ Var(Xy) +4Var(Xs) + 9Va7’(X3)] _ 1A
6 36 36

The Cramer-Rao bound is — I(A) =2 and as 5 < 1;(;\, the estimator does not attain the

Cramer-Rao bound.

(d) We compute the new estimator:

. ) X, 42X, + 3X
A = E[|X1+ Xo+ X3 = B[ g &

1
= 6(E[Xl\X1 + Xo + X3] 4+ 2B [ Xo| Xy + Xo + X;3] + 3E[ X3 X1 + Xo + X5))

| X1+ Xo + X5

As X1, X5, X3 is an i.i.d. sample we have F[X;|X; + Xy + X3] = %(Xl + X5+ X3), so that

. 1.1 Xi+Xo+ X5
A= 65X+ Xo+ X)) = ! ; > = X.

As Var(\,) = iVar(X;) = 3, the new estimator attains the Cramer-Rao bound.

(e) Compute the joint density ratio:
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and we reject Hy if
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Under Hj the statistic Zle X; has a Poisson distribution with parameter 1 +1+1 = 3.
Therefore we want the right hand-side to correspond to the 1 — a = 0.95 quantile of
a Poisson distribution with parameter 3. The decision rule is that we reject the null
hypothesis Hy when Z?Zl X, takes a value equal to or larger than g o = ¢30.95



SOLUTION 4:
(a) The log likelihood is:

l(o?) = log(L(0*)) = log (H (5ol 20}))

Compute the 1st derivative and set to zero:
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To check whether this is really a maximum, we compute the 2nd derivative::
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When plugging in 07 = S— we get
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As this is negative, we indeed have a maximum, and 63,, = S—.
(b) We have:
Z Xz
El63] = E E[X7]
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We note that X; = \/U? + W7, so that X7 = U? + W7 and (X7)2 = (&)2 + (%)2 As

% and % are standard Gaussian, the square sum of both is x*(2) distributed and has

expectation 2. Thus it follows:
X\’
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So we have:
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(c) We make use of the 2nd derivative with n = 1:

1 X2 1 E[X2 11 X1\’
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Using a result from part (b), namely that E [(71)2} = 2, we get:

(d) We compute the variance of the ML estimator:

> X?
i=1 2
Var(63,,) = Var 4n2 E Var(X;)

Like in part (b), we use that X; = /U? + W2, so that X? = U? + W? and (X?)2 =

7 K3

(&)2 + (m)2 As UZ and Y are standard Gaussian, the square sum of both is x?(2)

digtribute(ir and has variance 4. Thus it follows:

o\ 2
Var ((—Z> ) =4 Var(X}) = 40!
o

. 2 ’ : - -
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so that the ML estimator attains the Cramer Rao bound.

(e) Asymptotically we have:

Vi (8 — 0%) ~ N (0,1(6%) )
& VI V- (63— 0%) ~ N(0,1)

We have n =9, 63, = 4 and the observed Fisher information is I(4) = <. This yields:

[ VO (4—0%) ~N(0,1)

S0t~ NO0,)

Let ¢, be the a quantile of the N (0,1), so that ¢, = —¢1_q

3 4 4
P(qo.025 < 1(4 —07%) < qogrs) = 0.95 < P4+ 3 (—qo.oz5 > 0% > 4 — 3 do.025) = 0.95

and the 0.95 CI is given by: 4 + % “o.025- With ggo25 ~ —2 we get the interval [‘51, %] or
[1.333, 6.667].



SOLUTION 5:
(a) Second order Taylor expansion:

R R A 1 . A
Z(QO) ~ l(@ML)—F(QML—QO)'Z(QML)+§((9ML—80)2'l/(@ML)
1. "
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as l/(éML) = 0.

(b) We use the result from (a)

(0o) — 921 L)
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2. (z(éML> + %(ém —00) - 1"(Orgr) — z(éML)) see (a)
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(c) We recall:
2
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We have:
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and according to the Law of the Large Numbers (LLN) the later expression converges to

B[] = B [ 51087 (510))] o=, = ~1000

END OF SOLUTIONS



